Influence of abiotic factors on the resistance of plants to insects

Ciro Pedro Guidotti Pinto, Sabrina Ongaratto

Abstract


Abstract. Plant resistance is considered as an important pillar of Integrated Pest Management (IPM), being a highly targeted method since is a less harmful method to the environment, if compared to other tactics such as chemical control. Abiotic factors are those related to the environment and have a direct influence on the dynamics of interaction between insects and plants. The abiotic factors such as altitude, temperature, humidity, luminosity, wind and soil fertility, among others, do not act alone, but in a complex net that leads insect population dynamics in agroecosystems. How the variations of these factors can be studied in the same context? First, it is important to consider how each abiotic factors act separately and then in a coexistence influence over the populations dynamics of insects and plants. In this study, the literature about the influence of abiotic factors on insect herbivory has been reviewed, focusing mainly on the mechanisms in which the plants use in the defense against insects.

Influência de fatores abióticos na resistência de plantas a insetos

Resumo. A resistência de plantas é considerada um importante pilar no contexto do Manejo Integrado de Pragas (MIP), sendo um método bastante visado por ser menos nocivo ao meio ambiente, quando comparado a outras táticas como o controle químico. Os fatores abióticos são aqueles relacionados ao ambiente e têm influência direta na dinâmica de interação entre insetos e plantas. Os fatores abióticos como altitude, temperatura, umidade, luminosidade, ventos e fertilidade do solo, por exemplo, não atuam sozinhos, mais sim em um complexo de fatores coexistentes que regem as dinâmicas populacionais nos diversos agroecosistemas. Como as variações destes fatores podem ser estudadas em um mesmo contexto? Primeiramente, é importante conhecer como cada uma atua individualmente para então contextualizar em uma situação de coexistência sobre as dinâmicas populacionais de insetos e plantas. Neste artigo, a literatura sobre a influência de fatores abióticos na herbivoria de insetos foi revisada, focando principalmente nos mecanismos em que as plantas utilizam na defesa contra insetos.


Keywords


Interaction; Mechanisms; Population dynamics; Dinâmica populacional; Interação; Mecanismos

Full Text:

PDF

References


Agrawal, A.A., 2002. Herbivory and maternal effects: Mechanisms and consequences of transgenerational induced plant resistance. Ecology, 83: 3408-3415. DOI: https://doi.org/10.1890/0012-9658(2002)083[3408:HAMEMA]2.0.CO;2.

Agrawal, A.A., 2001.Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect? The American Naturalist, 157: 555-569. DOI: https://doi.org/10.1086/319932.

Ayres, M.P. & M.J. Lombardero, 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262: 263-286. DOI: https://doi.org/10.1016/S0048-9697(00)00528-3.

Bakhat, H.F., N. Bibi, Z. Zia, S. Abbas, H.M. Hammad, S. Fahad, M.R. Ashrafc, G.M. Shaha, F. Rabbani & S. Saeed, 2018. Silicon mitigates biotic stresses in crop plants: a review. Crop Protection, 104: 21-34. DOI: https://doi.org/10.1016/j.cropro.2017.10.008.

Bale, J.S., G.J. Masters, I.D. Hodkinson, C. Awmack, T.M. Bezemer, V.K. Brown, J. Butterfield, A. Buse, J.C. Coulson, J. Farrar, J.E.G. Good, R. Harrington, S. Hartley, T.H. Jones, R.L Lindroth, M.C. Press, I. Symrnioudis, A.D. Watt & J.B. Whittaker, 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1-16. DOI: https://doi.org/10.1046/j.1365-2486.2002.00451.x.

Boiça Júnior, A.L., C.A. Freitas, M.M. Freitas, L. Nogueira, M.M. Di Bello, S.S. Fonseca & W.I. Eduardo, 2018. Estratégias de defesa de plantas a insetos, p. 71-93. In: Castilho, R.C., C.C. Truzi & C.P.G. Pinto (Eds.). Tópicos em Entomologia Agrícola. Jaboticabal: Multipress, 11: 231p.

Boiça Júnior, A.L., B.H.S. Souza, G.S. Lopes, E.N. Costa, R.F.O. Moraes & W.I. Eduardo, 2013. Atualidades em resistência de plantas a insetos, p. 207-224. In: Busoli, A.C., J.R.D.C.C. Alencar, D.F. Fraga, L.A. Souza, B.H.S. Souza & J.F.J. Grigolli (Eds.). Tópicos em Entomologia Agrícola. Jaboticabal, Multipress.

Bosu, P.P. & M.R. Wagner, 2014. Effects of induced water stress on leaf trichome density and foliar nutrients of three elm (Ulmus) species: implications for resistance to the elm leaf beetle. Environmental entomology, 36: 595-601. DOI: https://doi.org/10.1603/0046-225X(2007)36[595:EOIWSO]2.0.CO;2.

Boyko, A., T. Blevins, Y. Yao, A. Golubov, A. Bilichak, Y. Ilnytskyy, J. Hollander F. Meins Jr & I. Kovalchuk, 2010. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One, 5: 1-12. DOI: https://doi.org/10.1371/journal.pone.0009514.

Carmona, D., M.J. Lajeunesse & M.T.J. Johnson, 2011. Plant traits that predict resistance to herbivores. Functional Ecology, 25: 358-367. DOI: https://doi.org/10.1111/j.1365-2435.2010.01794.x.

Chen, C., A. Biere, R. Gols, W. Halfwerk, K. Van Oers & J.A. Harvey, 2018. Responses of insect herbivores and their food plants to wind exposure and the importance of predation risk. The Journal of Animal Ecology, 1-12. DOI: https://doi.org/10.1111/1365-2656.12835.

Cipollini, D.F. & A.M. Redman, 1999. Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. Journal of Chemical Ecology, 25: 271-281. DOI: https://doi.org/10.1023/A:1020842712349.

Clemensen, A.K., F.D. Provenza, S.T. Lee, D.R. Gardner, G.E. Rottinghaus & J.J. Villalba, 2017. Plant secondary metabolites in alfalfa, birdsfoot trefoil, reed canarygrass, and tall fescue unaffected by two different nitrogen sources. Crop Science, 57: 964-970. DOI: https://doi.org/10.2135/cropsci2016.08.0680.

Coley, P.D. & J.A. Barone, 1996. Herbivory and Plant Defenses in Tropical Forests. Annual Review of Ecology and Systematics, 27: 305-335. DOI: https://doi.org/10.1146/annurev.ecolsys.27.1.305.

De Lucia, E., P. Nabity, J. Zavala & M. Berenbaum, 2012. Climate Change: Resetting Plant-Insect Interactions. Plant Physiology, 160: 1677-1685. DOI: https://doi.org/10.1104/pp.112.204750.

Dicke, M. & I.T. Baldwin, 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Science, 15: 167-175. DOI: https://doi.org/10.1016/j.tplants.2009.12.002.

Epstein, E., 2001. Silicon in plants: facts vs. concepts, p. 1-15. In: Datnoff, L.E., G.H. Snyder & G.H. Korndörfer (Eds). Studies in Plant Science. Amsterdã, Elsevier, 8: 403 p.

Erb, M., V. Flors, D. Karlen, E. De Lange, C. Planchamp, M. D’Alessandro, T.C.J. Turlings, & J. Ton, 2009. Signal signature of aboveground induced resistance upon belowground herbivory in maize. The Plant Journal, 59: 292-302. DOI: https://doi.org/10.1111/j.1365-313X.2009.03868.x.

Fischer, K. & K. Fiedler, 2000. Reponse of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia, 124: 235-241. DOI: https://doi.org/10.1007/s004420000365.

Flynn, D.F.B., E.A. Sudderth & F.A. Bazzaz, 2006. Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environmental and Experimental Botany, 56: 10-18. DOI: https://doi.org/10.1016/j.envexpbot.2004.12.001.

Gols, R. & J.A. Harvey, 2009. Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochemistry Reviews, 8:187-206. DOI: https://doi.org/10.1007/s11101-008-9104-6.

Gomes, F.B., J.C.D. Moraes, C.D.D. Santos & M.M. Goussain, 2005. Resistance induction in wheat plants by silicon and aphids. Scientia Agricola, 62: 547-551. DOI: http://dx.doi.org/10.1590/S0103-90162005000600006.

Gomes, F.B., J.C. Moraes & D.K.P. Neri, 2009. Adubação com silício como fator de resistência a insetos-praga e promotor de produtividade em cultura de batata inglesa em sistema orgânico. Ciência e Agrotecnologia, 33: 18-23, 2009. DOI: http://dx.doi.org/10.1590/S1413-70542009000100002.

Gouinguené, S.P. & T.C.J. Turlings, 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiology, 129: 1296-1307. DOI: https://doi.org/10.1104/pp.001941.

Goussain, M.M., J.C. Moraes, J.G. Carvalho, N.L. Nogueira & M.L. Rossi, 2002. Effect of silicon application on corn plants upon the biological development of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology, 31: 305-310. DOI: http://dx.doi.org/10.1590/S1519-566X2002000200019.

Gupta, S.D. & A. Agarwal, 2017. Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment, p. 1-25. In: S.D. Gupta (Ed.). Light Emitting Diodes for Agriculture. Singapore, Springer, 334 p.

Hare, J.D., 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annual Review of Entomology, 56: 161-180. DOI: https://doi.org/10.1146/annurev-ento-120709-144753.

Hodkinson, I.D., 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews, 80: 489-513. DOI: https://doi.org/10.1017/S1464793105006767.

Holeski, L.M., Jander, G. & A.A. Agrawal, 2012. Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology & Evolution, 27: 618-626. DOI: https://doi.org/10.1016/j.tree.2012.07.011.

Huberty, A.F. & R.F. Denno, 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85: 1383-1398. DOI: https://www.jstor.org/stable/3450179.

Jamieson, M.A., A.M. Trowbridge, K.F. Raffa & R.L. Lindroth, 2012. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiology, 160: 1719-1727. DOI: https://doi.org/10.1104/pp.112.206524.

Johnson, S.N. & T. Züst, 2018. Climate change and insect pests: Resistance is not futile? Trends in Plant Science, 23: 367-369. DOI: https://doi.org/10.1016/j.tplants.2018.03.001.

Koricheva, J., H. Nykänen & E. Gianoli, 2004. Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all?. The American Naturalist, 163:E64-E75. DOI: https://doi.org/10.1086/382601.

Mody, K., D. Eichenberger & S. Dorn, 2009. Stress magnitude matters: different intensities of pulsed water stress produce non‐monotonic resistance responses of host plants to insect herbivores. Ecological Entomology, 34: 133-143. DOI: https://doi.org/10.1111/j.1365-2311.2008.01053.x.

Muday, G.K. & H. Brown-Harding, 2018. Nervous system-like signaling in plant defense. Science, 361: 1068-1069. DOI: https://doi.org/10.1126/science.aau9813.

Nguyen, D., N. D'Agostino, T.O. Tytgat, P. Sun, T. Lortzing, E.J. Visser, S.M. Cristescu, A. Steppuhn, C. Mariani, N.M. Van Dam & I. Rieu, 2016. Drought and flooding have distinct effects on herbivore induced responses and resistance in Solanum dulcamara. Plant, Cell & Environment, 39: 1485-1499. DOI: https://doi.org/10.1111/pce.12708.

Pellissier, L., K. Fiedler, C. Ndribe, A. Dubuis, J.N. Pradervand, A. Guisan & S. Rasmann, 2012. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution, 2: 1818-1825. DOI: https://doi.org/10.1002/ece3.296.

Pellissier, L., A. Roger, J. Bilat & S. Rasmann, 2014. High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography, 37: 950-959. DOI: https://doi.org/10.1111/ecog.00833.

Pinto, M.S.T., J.M. Ribeiro & E.A.G. Oliveira, 2011. O estudo de genes e proteínas de defesa em plantas. Brazilian Journal of Biosciences, 9: 241-248.

Poelman, E.H., 2015. From induced resistance to defence in plant insect interactions. Entomologia Experimentalis et Applicata, 157: 11-17. DOI: https://doi.org/10.1111/eea.12334.

Rasmann, S., N. Alvarez & L. Pellissier, 2014. The altitudinal niche-breadth hypothesis in insect-plant interactions, p. 339-359. In: Voelckel C. & G. Jander (Eds.). Annual Plant Reviews: Insect-Plant Interactions, 47: 420 p. DOI: https://doi.org/10.1002/9781118829783.ch10.

Rasmann, S., L. Pellissier, E. Defossez, H. Jactel & G. Kunstler, 2014. Climate-driven change in plant-insect interactions along elevation gradients. Functional Ecology, 28: 46-54. DOI: https://doi.org/10.1111/1365-2435.12135.

Reynolds, O.L., M.P. Padula, R. Zeng & G.M. Gurr, 2016. Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in Plant Science, 7: 744. DOI: https://dx.doi.org/10.3389%2Ffpls.2016.00744.

Rosenblatt, A.E. & O.J. Schmitz, 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends in Ecology & Evolution, 31: 965-975. DOI: https://doi.org/10.1016/j.tree.2016.09.009.

São João, R.E. & A. Raga, 2016. Mecanismo de defesa das plantas contra o ataque de insetos sugadores. Instituto Biológico- APTA (Documento Técnico 23), 13 p.

Sharma, H.C., A.R. War, M. Pathania, S.P. Sharma, S.M. Akbar & R.S. Munghate, 2016. Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera. Arthropod-Plant Interactions, 10: 171-181. DOI: https://doi.org/10.1007/s11829-016-9422-3.

Souza, B.H.S., 2014. Fatores e mecanismos que influenciam a resistência em soja a Anticarsia gemmatalis Hübner e Spodoptera frugiperda (JE Smith). Tese (Doutorado em Agronomia: Entomologia Agrícola) - Universidade Estadual Paulista “Júlio de Mesquita Filho”.142 f.

Toyota, M., D. Spencer, S. Sawai-Toyota, W. Jiaqi, T. Zhang, A.J Koo, G.A. Howe & S. Gilroy, 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 361: 1112-1115. DOI: https://doi.org/10.1126/science.aat7744.

Vargas-Ortiz, E., E. Espitia-Rangel, A. Tiessen & J.P. Délano-Frier, 2013. Grain amaranths are defoliation tolerant crop species capable of utilizing stem and root carbohydrate reserves to sustain vegetative and reproductive growth after leaf loss. PLoS ONE, 8: e67879. DOI: https://doi.org/10.1371/journal.pone.0067879.

Veromann, E., M. Toome, A. Kännaste, R. Kaasik, L. Copolovici, J. Flink, G. Kovács, L. Arits, A. Luik & Ü. Niinemets, 2013. Effects of nitrogen fertilization on insect pests, their parasitoids, plant diseases and volatile organic compounds in Brassica napus. Crop Protection, 43: 79-88. DOI: https://doi.org/10.1016/j.cropro.2012.09.001.

Villegas, J.M., M.O. Way, R.A. Pearson & M.J. Stout, 2017. Integrating soil silicon amendment into management programs for insect pests of drill-seeded rice. Plants, 6: 33. https://doi.org/10.3390/plants6030033.

War, A.R., M.G. Paulraj, T. Ahmad, A.A. Buhroo, B. Hussain, S. Ignacimuthu & H.C. Sharma, 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 7: 1306-1320. DOI: https://doi.org/10.4161/psb.21663.

Waring, G.L. & N.S. Cobb, 1992. The impact of plant stress on herbivore population dynamics, p. 167-226. In: E.A. Bernays (Ed.). Insect-plant interactions. Flórida, CRC Press, 4: 248 p.

Watt, T.J., J.J. Duan, D.W. Tallamy, J. Hough-Goldstein, T.W. Ilvento, X. Yue & H. Ren, 2016. Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature. Biological Control, 96: 1-7. DOI: https://doi.org/10.1016/j.biocontrol.2016.01.011.

White, T.C.R., 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology, 50: 905-909. DOI: https://www.jstor.org/stable/1933707.




DOI: http://dx.doi.org/10.12741/ebrasilis.v12i1.839

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Autores e EntomoBrasilis

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Qualis Capes

EntomoBrasilis received B3 Interdisciplinary, B4 in Agrarian Sciences I, Environmental Sciences, Teaching and Collective Health, B5 in Biotechnology, Education and Zootechnics / Coastal Resources, in the evaluation of the QUALIS system of CAPES updated in 2016. The complete evaluation is here.

Open Access Articles

|    License Agreement    |     Instructions to authors (PDF)   |    Periodic Project   |   Privacy Policy    |    Currículo Lattes (Search)    |   Scielo     |     Periodicals related to Entomology and their abbreviations     |      Ortografa!

Indexers:

Latindex   |   SEER/IBICT     |    Dialnet     |    Agrobase - Literatura Agrícola     |   Sumários de Revistas Brasileiras     |     DOAJ     |    CABI Abstracts     |    LivRe!       |   RCAAP   |    Diadorim    |    Electronic Journals Library   | Eletronic Journals Index  |   Fonte Acadêmica - EBSCO  |   ZooBank    |   Zoological Records    |   Agro Unitau    |    BASE (Bielfield Academic Search Engine)    

Other sources:

   WorldCat    |     Mendeley     |     Google Acadêmico    |    Qualis CAPES    

Copyright © 2008-2019, Entomologistas do Brasil

The technical reviews and scientific and even personal, contained in articles and scientific papers published in EntomoBrasilis are full responsibility of their respective authors.

 

EntomoBrasilis. ISSN Online 1983-0572 doi: 10.12741

 

Website hosted free on HostingZone

We are affiliated to ABEC (Associação Brasileira de Editores Científicos)

We are affiliated to Periódicos CAPES

 

Support