Termite Communities in Sugarcane Plantations in Southeastern Brazil: an Ecological Approach

Authors

  • Luciane Kern Junqueira Pontifícia Universidade Católica de Campinas
  • Edmilson Ricardo Gonçalves Pontifícia Universidade Católica de Campinas
  • Lucas Manuel Cabral Teixeira Pontifícia Universidade Católica de Campinas

DOI:

https://doi.org/10.12741/ebrasilis.v8i2.502

Keywords:

Functional groups, Grupos funcionais, Heterotermes sp., Isoptera

Abstract

Termites are key components of soil fauna, playing an essential role in organic matter decomposition and nutrient cycling. However, they can cause significant economic losses in commercial plantations, such as sugar cane. Therefore, the correct identification of termite species is critical for pest control. Here, we evaluated the species richness, abundance and functional groups of termites in sugarcane plantations in 53 cities throughout the state of São Paulo, southeastern Brazil. We also analyzed the influence of macroclimatic variables on termite species distribution and functional groups. We found 22 taxa of two families, of which the most frequent species were Termitidae (96.51%). Within this family, Apicotermitinae had the highest frequency of occurrence (37.12%), followed by Termitinae (30.57%), Syntermitinae (27.95%), and Nasutitermitinae (0.8 %). The other family, Rhinotermitidae, had the lowest frequency (3.5%), being represented only by Heterotermes sulcatus Mathews. We classified Neocapritermes opacus Hagen (29.26%), Apicotermitinae sp.2 (24.89%), Cornitermes cumulans Kollar (13.10%), and Apicotermitinae sp.1 (6.99%) as common taxa. The remaining 18 species were classified as rare. The most common functional group was humus-feeders (37%), followed by wood-feeders (34%), grass-litter feeders (25%), and intermediate feeders (4%). Climate influenced the distribution of common species, humus-feeders and grass-litter feeders. Regarding the pest status of termites in sugar cane plantations, we suggest that the exasperated use of pesticide in the last decades has reduced the abundance of species considered pests (e.g. Heterotermes) and reinforce the importance of ecological approaches for determining the best pest control methods.

Comunidades de Cupins em Cultivos de Cana-de-Açúcar no Estado de São Paulo: Uma Abordagem Ecológica

Resumo. Os cupins são importantes componentes da fauna de solo, atuando na decomposição da matéria orgânica e ciclagem de nutrientes. Porém, em cultivos de cana-de-açúcar, podem provocar perdas econômicas significativas. A correta identificação das espécies de cupins é um ponto crítico para o controle daquelas que adquiriram e/ou que podem atingir o status de praga. Este trabalho objetivou identificar a riqueza, a abundância e os grupos funcionais destes insetos em canaviais de 53 municípios do estado de São Paulo. Paralelamente, avaliou se as variáveis macroclimáticas influenciam a distribuição das comunidades de cupins e dos grupos funcionais. A riqueza obtida foi de 22 táxons. Da família Termitidae (96,51%), a maior frequência de ocorrência foi da subfamília Apicotermitinae (37,12%), seguindo-se Termitinae (30,57%), Syntermitinae (27,95%) e Nasutitermitinae (0,8%). A família Rhinotermitidae (3,5%) esteve representada apenas por Heterotermes sulcatus Mathews. Quatro táxons foram considerados comuns em canaviais, Neocapritermes opacus Hagen (29,26%), Apicotermitinae sp.2 (24,89%), Cornitermes cumulans Kollar (13,10%) e Apicotermitinae sp.1 (6,99%) e os 18 restantes foram classificados como raros. O grupo funcional mais frequente foi o dos humívoros (37%), seguido por xilófagos (34%), comedores de serrapilheira (25%) e intermediários (4%). O clima influenciou a distribuição das espécies comuns, bem como dos grupos funcionais dos humívoros e dos comedores de serrapilheira. Sugere-se que o uso intensivo de pesticidas nas últimas décadas reduziu a abundância de espécies até então consideradas praga em cana-de-açúcar (ex. Heterotermes), o que reforça a importância dos estudos ecológicos para a definição de métodos de controle mais adequados.

References

Ackerman, I.L., W.G. Teixeira, S.J. Riha, J. Lehmann. & E.C.M. Fernandes 2007. The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Applied Soil Ecology, 37: 267-276. doi:10.1016/j.apsoil.2007.08.005.

Ackerman, I.L., R. Constantino, H.G.Jr. Gauch, J. Lehmann, S.J. Riha & E.C.M. Fernandes, 2009. Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in Central Amazonia. Biotropica, 41: 226-233. doi: 10.1111/j.1744-7429.2008.00479.x.

AGROFIT, 2012. Sistemas de agrot

Almeida, J.E.M. & S.B. Alves, 1999. Controle de Heterotermes tenuis (Hagen, 1858) (Isoptera: Rhinotermitidae) em cana-de-a

Ara

Arrigoni, E.D.B., Precetti, A.A.C.M., Almeida, L.C. & P. Kasten Junior, 1988. Metodologia de levantamento de pragas de solo em cana-de-a

Bandeira, A.G. & A. Vasconcellos, 2002. A quantitative survey of termites in a gradient of disturbed highland forest in Northeastern Brazil (Isoptera). Sociobiology, 39: 429-439.

Bandeira, A.G., A. Vasconcellos, M.P. Silva, & R. Constantino, 2003. Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga domain, Brazil. Sociobiology, 42: 117-127.

Batista-Pereira, L.G., M.G. Santos, A.G. Correa, J.B. Fernandes, A. Arab, A.M Costa-Leonardo, C.R. Dietrich, D.A. Pereira, & O.C. Bueno, 2004. Cuticular hydrocarbons of Heterotermes tenuis (Isoptera: Rhinotermitidae): analyses and electrophysiological studies. Zeitschrift fur Naturforschung, 59: 135-139.

Berti Filho, E., 1995. Cupins e florestas, p. 127-140. In: Berti Filho, E. & L.R. Fontes (Eds), Alguns aspectos atuais da biologia e controle de cupins. Piracicaba: FEALQ. 183 p.

Bignell, D.E. & P. Eggleton, 2000. Termites in ecosystems, p. 363-387. In: T. Abe, D.E. Bignell & M. Higashi (Eds.), Termites: Evolution, Sociality, Symbioses, Ecology. Netherlands: Kluwer Academic Publishers. 466 p.

Campos, M.B.S., S.B. Alves & N. Macedo, 1998. Sele

Cancello, E.M., 1986. Revis

Cancello, E.M., 1989. Revis

Carrijo, T.F., d. Brand

Cheavegatti-Gianotto, A., H.M.C. Abreu, P. Arruda, J.C. Bespalhok Filho, W.L. Burnquist, S. Creste, LDi. Ciero, J.A. Ferro, A.V.O. Figueira, T.S. Filgueiras, M.F. Grossi-De-S

Collins, N.M., 1980. The distribution of soil macrofauna on the west ridge of Gunung (Mount) Mulu, Sarawak. Oecologia 44: 263

Collins, N.M., 1981. The role of termites in the decomposition of wood and leaf litter in the southern Guinea Savanna of Nigeria. Oecologia, 51: 389-399. doi: 10.1007/BF00540911.

CONAB Companhia Nacional de Abastecimento. 2009. Available on: <http://www.conab.gov.br> Access on: [06.20.2011].

Constantino R., 1994. A new genus of Nasutitermitinae with mandibulate soldiers from tropi- cal North America (Isoptera: Termitidae). Sociobiology, 25: 285-294.

Constantino, R., 1995. Revision of the neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). The University of Kansas Science Bulletin, 55: 455-518.

Constantino, R., 1998. Catalog of the living termites of the new world (Insecta: Isoptera). Arquivos de Zoologia, 35: 135-260. doi: 10.11606/issn.2176-7793.v35i2p135-230.

Constantino, R., 1999. Chave ilustrada para identifica

Constantino, R., 2001. Key to the soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Systematics and Evolution, 31: 463-472. doi: 10.1163/187631200X00499.

Constantino, R., 2002a. An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa, 67: 1-40.

Constantino, R., 2002b. The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology, 126: 355-365. doi: 10.1046/j.1439-0418.2002.00670.x.

Constantino, R., 2014. On-line termite database. Available on: <http://164.41.140.9/catal>. Access on: [06.20.2014].

Contantino, R., A.N.S. Acioli, K. Schmidt, C. Cuezzo, S.H.C. Carvalho & A. Vasconcello, 2006. A taxonomic revision on the Neotropical termite genera Labiotermes Holmgren and Paracornitermes Emerson (Isoptera: Termitidae: Nasutitermitinae). Zootaxa, 1340: 1-44.

Constantino, R. & S.H.C. Carvalho, 2011. Paracurvitermes, a new genus of Syntermitinae (Isoptera: Termitidae). Sociobiology, 57: 377-388.

Cunha, H.F., D.A. Costa & D. Brand

Cunha, H.F. & P.P.A.M. Morais, 2010. Rela

Czepak, C., E.A. Araujo & P.M. Fernandes, 2003. Ocorr

Dantas, F., 2011. Hora de Renovar. CANAL: Jornal da Bioernegia. Goi

Davies, R.G., 2002. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia, 133: 233-242. doi: 10.1007/s00442-002-1011-8.

De Souza, O.F.F. & Brown, V.K. (1994). Effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology, 10: 197-206. doi: 10.1017/S0266467400007847.

Del-Claro, K., 2008. Biodiversidade Interativa: a ecologia comportamental e de intera

Dibog, L., P. Eggleton, L. Norgrove, D.E. Bignell & S. Hauser, 1999. Impacts of canopy cover on soil termite assemblages in an agrisilvicutural system in Southern Cameroon. Bulletin of Entomological Research, 89: 125-32. doi: 10.1017/S0007485399000206.

Diehl, E., L.K. Junqueira & E. Berti-Filho, 2005. Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazilian Journal of Biology. 65: 431-437. doi: 10.1590/S1519-69842005000300008.

Diehl E., E. Dihel-Fleig, E.Z. de Albuquerque & L.K. Junqueira, 2014. Richness of Termites and Ants in the State of Rio Grande do Sul, Southern Brazil. Sociobiology, 61: 145-154. doi: 10.13102/sociobiology.v61i2.145-154.

Donovan, S.E., P. Eggleton & D.E. Bignell, 2001. Gut content analysis and a new feeding group classification of termites. Ecological Entomology, 26: 356-366. doi: 10.1046/j.1365-2311.2001.00342.x.

Dray, S., P. Legendre & P.R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 19: 483-493. doi: 10.1016/j.ecolmodel.2006.02.015.

Dray, S., R.Pe. Lissier, P. Couteron, M.J. Fortin, P. Legendre, R. Peres-Neto, E. Bellier, R. Bivand, F.G. Blanchet, M.De Ca. Ceres, A.B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse & H.H. Wagner, 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82: 257-275. doi: 10.1890/11-1183.1.

Eggleton, P., D.E. Bignell, W.A. Sands, B. Waite, T.G. Wood & J.H. Lawton, 1995. The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Journal of Tropical Ecology 11: 85-98. doi: 10.1017/S0266467400008439.

Eggleton, P., R. Homathevi, D. Jeeva, D.T. Jones, R.G. Davies & M. Maryati, 1997. The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah East Malaysia. Ecotropica, 3: 119-28.

Eggleton, P., D.E. Bignell, S. Hauser, L. Dibog, L. Norgrove & B. Madong, 2002. Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture Ecosystems and Environment, 90: 189-202. doi: 10.1016/S0167-8809(01)00206-7.

Emerson, A.E., 1952. The neotropical genera Procornitermes and Cornitermes (Isoptera: Termitidae). Bulletin of the American Museum of Natural History, 99: 475-540.

Fernandes, P.M., C. Czepak & V.R.S. Veloso, 1998. Cupins de mont

Fontes, L.R., 1985. Acr

Fontes, L.R., 1992. Key to the genera of New World Apicotermitinae (Isoptera: Termitidae), p. 242-248. In: Quintero D. & A. Aiello (Orgs.), Insects of Panama and Mesoamerica. Oxford: University Press. 720 p.

Fontes, L.R., 1995. Sistem

Garcia J.F., L.P.M. Macedo & P.S.M. Botelho, 2004. Inimigo ao p

Gathorne-Hardy, F., Syaurani & P. Eggleton, 2001. The effects of altitude and rainfall on the composition of the termites (Isoptera) of the Leuser Ecosystem (Sumatra, Indonesia). Journal of Tropical Ecology, 17: 379-393. doi: 10.1017/S0266467401001262.

Gontijo, T.A. & Domingos, D.J. (1991). Guild distribution of some termites from cerrado vegetation in South-east Brazil. Journal of Tropical Ecology, 7: 523-529. doi: 10.1017/S0266467400005897.

Gotelli, N.J. & R.K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4: 379-391. doi: 10.1046/j.1461-0248.2001.00230.x.

Haifig, I., A.M. Costa-Leonardo & F.F. Marchetti, 2008. Effects of nutrients on feeding activities of the pest termite Heterotermes tenuis (Isoptera: Rhinotermitidae). Journal of Applied Entomology, 132: 497:501. doi: 10.1111/j.1439-0418.2008.01288.x.

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978. doi: 10.1002/joc.1276.

Holt, J.A. & M. Lepage, 2000. Termites and soil properties, p.389-407. In: Abe, T., D.E. Bignell & M. Higashi (Eds.) Termites: Evolution, Sociality, Symbioses, Ecology. Netherlands: Kluwer Academic Publishers. 466p.

Informa Economics FNP South America, 2009. Available on: http://www.informaecon-fnp.com. Accessed on: [03.24.2009].

Inoue, T., Y. Takematsu, A. Yamada, Y. Hongoh, T. Johjima, S. Moriya, Y. Sornnuwat, C. Vongkaluang, M. Ohkuma & T. Kudo, 2006. Diversity and abundance of termites along an altitudinal gradient in Khao Kitchagoot National Park, Thailand. Journal of Tropical Ecology, 22: 609-612. doi: 10.1017/S0266467406003403.

Jones, D.T., 2000. Termite assemblages in two distinct montane forest types at 1000 m elevation in the Maliau Basin, Sabah. Journal of Tropical Ecology, 16: 271-86.

Jones, D.T. & M.J.D. Brendell, 1998. The termite (Insecta: Isoptera) fauna of Pasoh Forest Reserve, Malaysia. Raffles Bulletin of Zoology, 46: 79-91.

Jones, D.T. & P. Eggleton, 2011. Global biogeography of termites: a compilation of sources, p. 477-517. In: Bignell, D.E., Y. Roisin & N. Lo (Eds.), Biology of termites: a modern synthesis. Dordrecht: Springer, 562 p. doi: 10.1007/978-90-481-3977-4_17.

Junqueira, L.K., E. Diehl & E. Berti Filho, 2008. Termites in eucalyptus forest plantations and forest remnants: an ecological approach. Bioikos, 22: 3-14.

Krishna, L. & R.L. Araujo, 1968. A revision of the neotropical termite genus Neocapritermes (Isoptera, Termitidae, Termitinae). Bulletin of the American Museum of Natural History, 138: 83-130.

Laffont, E.R., G.J. Torales, M.O. Arbino, M.C. Godoy, E.A. Porcel & J.M. Coronel, 1998. Termites associadas a Eucalyptus grandis W.Hill Ex Maiden en el noroeste de la prov

Lavelle, P., D. Bignell, M. Lepage, V. Wolters, P. Roger, P. Ineson, O.W. Heal & S. Dhillion, 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology. 33: 159-193.

Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier, 990 p.

Magurran, A.E., 2004. Measuring biological diversity. Oxford, Blackwell Science, 256 p.

Mathews, A.G.A., 1977. Studies on termites from the Mato Grosso State, Brazil. Rio de Janeiro: Academia Brasileira de Ci

McGill, B.J., R.S. Etienne, J.S. Gray, D. Alonso, D. Marti, M.J. Anderson, H.K. Benecha, M. Dornelas, B.J. Enquist, J.L. Green, F. He, A.H. Hurlbert, A.E. Magurran, P.A. Marquet, B.A. Maurer, A. Ostling, C.U. Soykan, K.I. Ugland & E.P. White, 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10: 995-1015 doi: 10.1111/j.1461-0248.2007.01094.x.

Menzel, L.V.A. & E. Diehl, 2008. Reproductive strategies of Cortaritermes fulviceps (Silvestri) (Isoptera, Termitidae, Nasutitermitinae) under laboratory conditions. Sociobiology, 51: 719-731.

Menzel, L.V.A. & E. Diehl, 2010. Soil Choice for Colony Foundation by Cortaritermes fulviceps (Isoptera, Termitidae, Nasutitermitinae). Sociobiology, 55: 471-487.

Mill, A.E., 1983. Generic keys to the soldier caste of the New World Termitidae (Isoptera: Insecta). Systematic Entomology. 8: 179-190. doi: 10.1111/j.1365-3113.1983.tb00478.x.

Miranda, C.S., A. Vasconcellos & A.G. Bandeira, 2004. Termites in sugar cane in Northeast Brazil: ecological aspects and pest status. Neotropical Entomology, 33: 237-241. doi: 10.1590/S1519-566X2004000200015.

Novaretti, W.R.T. & L.R. Fontes, 1998. Cupins: Uma grave amea

Oliveira, P.S. & K. Del-Claro, 2005. Multitrophic interactions in the Brazilian savanna: ant hemipteran systems, associated insect herbivores, and host plant, p. 414-438. In: Burslem, D., M. Pinard & S. Hartley (Eds.), Biotic interaction in the Tropics: their role in the maintenance of species diversity. London: Cambridge University Press. 580 p. doi: 10.1017/CBO9780511541971.018.

Oksanen, J.F., G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O

Palin, O.F., P. Eggleton, Y. Malhi, C.A.J. Girardin, A. Rozas-D

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available on: <http://www.R-project.org/>.

Rezende, B.R., 2012. H

Rocha, M.M. & E.M. Cancello 2009. Revision of the Neotropical termite genus Orthognathotermes Holmgren (Isoptera: Termitidae: Termitinae). Zootaxa, 2280: 1-26.

Rocha, M.M., E.M. Cancello & C. Cuezzo, 2011. A new genus and species of mandibulate nasute termite (Isoptera, Termitidae, Syntermitinae) from Brazil. Zookeys, 148:125-134. doi: 10.3897/zookeys.148.1278.

Rocha, M.M., E.M. Cancello & T.F. Carrijo, 2012a. Neotropical termites: revision of Armitermes Wasmann (Isoptera, Termitidae, Syntermitinae) and phylogeny of Syntermitinae. Systematic Entomology, 37: 793-827. doi: 10.1111/j.1365-3113.2012.00645.x.

Rocha, M.M., T.F. Carrijo & E.M. Cancello, 2012b. An illustrated key to the soldiers of Cyranotermes Araujo with a new species from Amazonia (Isoptera: Termitidae: Nasutitermitinae). Zootaxa. 3196: 50-57.

Roberts, D.W., 2013. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.6-1. Available on: <http://CRAN.R-project.org/package=labdsv>.

Siqueira, T., L.M. Bini, F.O. Roque, S.R.M. Couceiro, S. Trivinho-Strixino & K. Cottenie, 2012. Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography, 35: 183

Singh, M. & N.B. Singh, 2001. Application of insecticide for termite control and its effect on yield contributing characters in sugarcane. Sugar Tech, 3: 146-153.

Sleaford, F., D.E. Bignell & P. Eggleton, 1996. A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecological Entomology, 21: 279-288. doi: 10.1111/j.1365-2311.1996.tb01245.x.

Souza, H.B. de A., W de F. Alves & A. Vasconcellos, 2012. Termite assemblages in five semideciduous Atlantic Forest fragments in the northern coastland limit of the biome. Revista Brasileira de Entomologia, 56: 67

Tokeshi, M., 1999. Species Coexistence: ecological and evolutionary perspective. London: Blackwell Science Ltd., 454 p.

Val

Wardell, D.A., 1987. Control of termites in nurseries and young plantations in Africa: established practices and alternative courses of action. Common Wealth Forest Review, 66: 77-89.

Wilson, J.B., 1991. Methods for fitting dominance/diversity curves. Journal of Vegetation Science, 2: 35-46. doi: 10.2307/3235896.

Downloads

Published

2015-08-23

How to Cite

[1]
Junqueira, L.K., Gonçalves, E.R. and Teixeira, L.M.C. 2015. Termite Communities in Sugarcane Plantations in Southeastern Brazil: an Ecological Approach. EntomoBrasilis. 8, 2 (Aug. 2015), 105–116. DOI:https://doi.org/10.12741/ebrasilis.v8i2.502.

Issue

Section

Ecology